BASICS OF PHARMACOLOGY By: Kamelia Mirdamadi, Ph.D. Dec 04, 2021

WHAT IS PHARMACOLOGY?

Study of drugs and their actions Pharmacokinetic What the body does to drug Pharmacodynamic • What the drug does to the body • Drug can be artificial, natural, or a molecule made by the body

i.e. hormone

PHARMACOKINETIC (PK)

- Absorption: Drug gets absorbed into blood circulation from the intestine
- Distribution: Drug is distributed to different tissues and organs-site of action
- Metabolism: Conversion of drug into more active or inactive molecules
- Elimination: Clearance of drug from the body

FACTORS AFFECTING PK

Physiology

- Age
- Gender
- Pregnancy
- Obesity
- Disease

FACTORS AFFECTING PK

Environment

- Exposure
- Drug-Drug Interaction
- Diet-Food-Drug Interaction
- Lifestyle

FACTORS AFFECTING PK

Genetic

- Drug metabolizing Enzyme
- Active Transport
- >90% of population have one genetic variant

ABSORPTION

- Permeability
 - Drug properties (Acid, Base, Ion, Non-ion),
 - Integrity of membrane i.e Leaky gut
- GI Motility: Food, Disease (Diarrhea)
- Drug solubility (pH, intestinal contents)
- Metabolic Enzymes (Intestinal metabolism)
- Active Transport
 - Drug Transporters
 - Decreased in diarrhea
 increased tacrolimus (immunosuppressant for organ transplant) concentrations in blood.

FACTORS AFFECTING ABSORPTION

- Diet: 34% of drugs are affected by food
 - E.g. Lapatinib (AIDS drug) 325% more absorption with food
- Age: Neonates, Elderly
- Disease
 - IBD: decreased absorption of drug
 - HIV infection reduces the intestinal enzyme -> reduced clearance of midazolam (anesthetic agent) by 50%- digoxin (heart failure and abnormal heart rhythms (arrhythmias)
- Environment
 - Drug-Drug Interaction
 - Erlotinib and omeprazole: lower absorption of anti cancer drug.
- Pregnancy
 - Reduced intestinal motiliy
 - Increased clearance

FOOD-DRUG INTERACTION

- Grapefruit Juice reduces the metabolism of many drugs leading to higher blood concentrations and possible toxicity
- Milk reduces the absorption of some antibiotics i.e. tetracyclines, ciprofloxacin

Koziolek, M. et. al. (2019)

DISTRIBUTION

- Blood proteins
- Drug Transporters
- Drug Receptors
- Blood Flow
- Drug Characteristics (Solubility, Permeability)

DISTRIBUTION

Drugs are bound to blood protein

- Lower blood protein→ large distribution of warfarin→ increased bleeding
 - pregnancy
 - Inflammation
 - Rena failure
 - Age
 - Drug Interaction
 - Sulfonamide displaces bilirubin→ jaundice in neonates
 - Sulfonamide is not recommended for breastfeeding
- Active Transport
 - Placenta
 - Brain

METABOLISM

- Blood flow
- Hepatocyte Uptake
- Metabolizing Enzymes
- Active secretion of bile

METABOLISM

- Drug metabolizing enzyme mature with age
 - Takes up to 2 years after birth;
 - Neonatal death after mother took codeine for pain
- Age
 - Reduced blood flow
 - Reduced liver mass
- Pregnancy
 - Altered liver enzymes
- Diet and Lifestyle
 - Alcohol increases some enzymes→ reduced drug effect
 - Smoking, Charcoaled meat, broccoli increase enzymes
- Disease
 - Arthritis, cancer, infection, etc.

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-in...

	Sensitive substrates	Moderate sensitive substrates
CYP1A2	alosetron, caffeine, duloxetine, melatonin, ramelteon, tasimelteon, tizanidine	clozapine, pirfenidone, ramosetron, theophylline
CYP2B6	bupropion ^(a)	efavirenz ^(a)
CYP2C8	repaglinide ^(b)	montelukast, pioglitazone, rosiglitazone
CYP2C9	celecoxib ^(c)	glimepiride, phenytoin, tolbutamide, warfarin
CYP2C19	S-mephenytoin, omeprazole	diazepam, lansoprazole ^(d) , rabeprazole, voriconazole
CYP2D6	atomoxetine, desipramine, dextromethorphan , eliglustat ^(e) , nebivolol, nortriptyline, perphenazine, tolterodine, R- venlafaxine	encainide, imipramine, metoprolol, propafenone, propranolol, tramadol, trimipramine, S-venlafaxine
СҮРЗА	alfentanil, avanafil, buspirone, conivaptan, darifenacin, darunavir ^(f) , ebastine, everolimus, ibrutinib, lomitapide, lovastatin ^(g) , midazolam, naloxegol, nisoldipine, saquinavir ^(f) , simvastatin ^(g) , sirolimus, tacrolimus, tipranavir ^(f) , triazolam, vardenafil	alprazolam, aprepitant, atorvastatin ^(c) , colchicine, eliglustat ^(e) , pimozide, rilpivirine, rivaroxaban, tadalafil
	budesonide, dasatinib, dronedarone, eletriptan, eplerenone, felodipine, indinavir ^(f) , lurasidone, maraviroc, quetiapine, sildenafil, ticagrelor, tolvaptan	

INFLAMMATORY DISEASE

Piquette-Miller & Jamali; DMD. 1995; 23:240-5

CLEARANCE

Decreased kidney function \rightarrow less clearance and more drug in body

Age

- Renal clearance (GFR) reduces with age
- Disease
 - Hypertension
 - Diabetes
 - Autoimmune disease
 - Cardiovascular disease
- Genetic
 - Altered active transport to and from kidneys

STAGES OF DRUG DEVELOPMENT

• <u>The Drug Development Process | FDA</u>